A pointwise equivalence of gradients on configuration spaces
نویسنده
چکیده
L’analyse sur les espaces de configurations développée dans [1] repose sur une égalité de normes en espérance pour le gradient local ∇ et l’opérateur de différence finie D sur les espaces des configurations Υ sur une variété Riemannienne X. Dans cette Note nous présentons une version ponctuelle de cette relation, avec une preuve concise qui fait apparâıtre le rôle de la dualité sur l’espace de Poisson. On montre que
منابع مشابه
Equivalence of Gradients on Connguration Spaces
The gradient on a Riemannian manifold X is lifted to the connguration space X on X via a pointwise identity. This entails a norm equivalence that either holds under any probability measure or characterizes the Poisson measures, depending on the tangent space chosen on X. More generally, this approach links carr e du champ operators on X to their counterparts on X , and also includes structures ...
متن کاملOn quasi $P$-spaces and their applications in submaximal and nodec spaces
A topological space is called submaximal if each of its dense subsets is open and is called nodec if each of its nowhere dense ea subsets is closed. Here, we study a variety of spaces some of which have already been studied in $C(X)$. Among them are, most importantly, quasi $P$-spaces and pointwise quasi $P$-spaces. We obtain some new useful topological characterizations of quasi $...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملMinimal Weak Upper Gradients in Newtonian Spaces Based on Quasi-banach Function Lattices
Properties of first-order Sobolev-type spaces on abstract metric measure spaces, so-called Newtonian spaces, based on quasi-Banach function lattices are investigated. The set of all weak upper gradients of a Newtonian function is of particular interest. Existence of minimal weak upper gradients in this general setting is proven and corresponding representation formulae are given. Furthermore, t...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کامل